|
气浮技术(二)(二)溶气气浮 根据废水中所含悬浮物的种类、性质、处理水净化程度和加压方式的不同,基本流程有以下三种。 (1)全流程溶气气浮法 全流程溶气气浮法是将全部废水用水泵加压,在泵前或泵后注入空气。在溶气罐内,空气溶解于废水中,然后通过减压阀将废水送人气浮池。废水中形成许多小气泡粘附废水中的乳化油或悬浮物而逸出水面,在水面上形成浮渣。用刮板将浮渣连排入浮渣槽, 经浮渣管排出池外, 处理后的废水通过溢流堰和出水管排出。 全流程溶气气浮法的优点:①溶气量大,增加了油粒或悬浮颗粒与气泡的接触机会;②在处理水量相同的条件下,它较部分回流溶气气浮法所需的气浮池小,从而减少了基建投资。但由于全部废水经过压力泵,所以增加了含油废水的乳化程度,而且所需的压力泵和溶气罐均较其他两种流程大,因此投资和运转动力消耗较大。 (2)部分溶气气浮法 部分溶气气浮法是取部分废水加压和溶气,其余废水直接进入气浮池并在气浮池中与溶气废水混合。其特点为:①较全流程溶气气浮法所需的压力泵小,故动力消耗低;②压力泵所造成的乳化油量较全流程溶气气浮法低:③气浮池的大小与全流程溶气气浮法相同,但较部分回流溶气气浮法小。 (3)部分回流溶气气浮法 部分回流溶气气浮法是取一部分除油后出水回流进行加压和溶气,减压后直接进入气浮池,与来自絮凝池的含油废水混合和气浮。回流量一般为含油废水的25%~50%。其特点为:①加压的水量少,动力消耗省;②气浮过程中不促进乳化;③矾花形成好,后絮凝也少;④气浮池的容积较前两种流程大。 为了提高气浮的处理效果,往往向废水中加入混凝剂或气浮剂,投力口量因水质不同而异,一般由试验确定。 (4)加压溶气气浮法的主要设备。 1.进气方式 加压溶气法有两种进气方式,即泵前进气和泵后进气。 泵前进气,这是由水泵压水管引出一支管返回吸水管,在支管上安装水力喷射器,省去了空压机。废水经过水力喷射器时造成负压,将空气吸人与废水混合后,经吸水管、水泵送人溶气罐。此法比较简便,水气混合均匀,但水泵必须采用自吸式进水,而且要保持1m 以上的水头。此外,其最大吸气量不能大于水泵吸水量的10%,否则,水泵工作不稳定,会产生气蚀现象。 泵后进气,一般是在压水管上通人压缩空气。这种方法使水泵工作稳定,而且不必要求在正压下工作,但需要由空气压缩机供给空气。法。 评价溶气系统的技术性能指标主要有两个即溶气效率和单位能耗。到目前为止双膜理论解释气体传质于液体还是比较接近于实际的。根据双膜理论,对于难溶气体决定传质过程的主要阻力来自液膜,而气膜中的传质阻力与之相比,可以忽略而不计。即要强化溶气过程,除应有足够的传质推动力外,关键在于扩大液相界面或减薄液膜厚度。但实际上在紊流剧烈的自由界面上是难以存在稳定的层流膜。因此便出现了随机表面更新理论,这种理论增加了表面更新速率,即在考虑气液接触界面传质时,引人了气相、液相在单位时间内因涡流扩散而流入气、液更新界面的传质因素,从而使理论和实际更为接近。 1加压溶气气浮工艺流程 加压溶气气浮法在国内外应用最为广泛。 水泵自调节池将原水提升到反应池。絮凝剂在吸水管上(泵前) 投入,并经叶轮混合于反应池中进行絮凝,反应后的絮凝水通过穿孔墙进入气浮池的接触区,与来自溶气释放器释出的溶气水相混合,此时水中的絮粒和微气泡相互碰撞粘附,形成带气絮粒而上浮,并在分离区进行固液分离,浮至水面的泥渣由刮渣机刮至排渣槽排出。清水则由穿孔集水管汇集至集水槽后出流。部分清水经由回流水泵加压后进入溶气罐,在罐内与来自空压机的压缩空气相互接触溶解,饱和溶气水从罐底通过管道输向释放器。 压力溶气气浮法工艺主要由三部分组成,即压力溶气系统、溶气释放系统及气浮分离系统。 (1)压力溶气系统。它包括水泵、空压机、压力溶气罐及其它附属设备。其中压力溶气罐是影响溶气效果的关键设备。 采用空压机供气方式的溶气系统是目前应用最广泛的压力溶气系统。气浮法所需空气量较少,可选用功率小的空压机,并采取间歇运行方式。此外空压机供气还可以保证水泵的压力不致有大的损朱。一般水泵至溶气罐的压力约0.5MPa ,因此可以节省能耗。 (2)溶气释放系统。它一般是由释放器(或穿孔管、减压阀)及溶气水管路所组成。溶气释放器的功能是将压力溶气水通过消能、减压,使溶入水中的气体以微气泡的形式释放出来,并能迅 速而均匀地与水中杂质相粘附。 对溶气释放器的具体要求是: ①充分地减压消能,保证溶人水中的气体能充分地全部释放出来; ②消能要符合气体释出的规律,保证气泡的微细度,增加气泡的个数,增大与杂质粘附的表面积,防止微气泡之间的相互碰撞而使气泡扩大; ③创造释气水与待处理水中絮凝体良好的粘附条件,避免水流冲击,确保气泡能迅速均匀地与待处理水混合,提高" 捕捉" 机率; ④为了迅速地消能,必须缩小水流通道,故必须要有防止水流通道堵塞的措施; ⑤构造力求简单,材质要坚固、耐腐蚀,同时要便于加工、制造与拆装,尽量减少可动部件,确保运行稳定、可靠; ⑤溶气释放器的主要工艺参数为:释放器前管道流速:1m/s以下,释放器的出口流速以0.4~0.5m /s 为宜;冲洗时狭窄缝隙的张开度为5mm ;每个释放器的作用范围30~100cm。 (3)气浮分离系统。它一般可分为三种类型即平流式、竖流式及综合式。其功能是确保一定的容积与池的表面积,使微气泡群与水中絮凝体充分混合、接触、粘附,以保证带气絮凝体与清水分离。 下面以平流式气浮池为例分析带气絮凝体上浮分离过程的运动状态。 带气絮粒在接触室内通过浮力、重力与水流阻力的平衡作用后,取得了向上的升速U 上。进入分离区后,又受到两个力的作用:一是水流扩散后由水平推力所产生的水平向流速U 推;二是由于底部出流所产生的向下流速U 下。这两种流速的合速度大小及方向决定了带气絮凝体或是上浮去除,或是随水流挟出。至于其中上升或下降的速度则视合成速度U 合在纵轴上投影的大小。 因此①要使上浮效果好,必须尽量降低U 下。它可用扩大底部出流面积或提高出水的均匀度实现;②随着底部的均匀集流、出流,水流到池未端U 平约为零,这有利于上浮力较小的带气絮凝体的分离;③如要提前实现上浮去除,应尽量降低u 平,这可用扩大气浮池横断面的方式来实现。 竖流式气浮池分离区中颗粒的运动状态与平流式相似。但其水平向分速要小得多、而且随径向距离的增加,断面迅速扩展,u 平迅速变小。特别是竖流式的流速方向改政变不大,絮凝体主要受到向上水流推动力的惯性作用,颗粒的向上分速增大,使得带气絮凝体与水体的分离条件比平流式要优越得多。不过究竟采用什么形式还需要对各方面的条件进行综合评价后才能确定。 |